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Decoding cancer etiology with cellular reprogramming
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Ruiying Zhao1 and Dung-Fang Lee1,2,3

Cancer research remains clinically unmet in many areas due to 
limited access to patient samples and the lack of reliable model 
systems that truly reflect human cancer biology. The emergence 
of patient-derived induced pluripotent stem cells and engineered 
human pluripotent stem cells (hPSCs) has helped overcome these 
challenges, offering a versatile alternative platform for advancing 
cancer research. These hPSCs are already proving to be valuable 
models for studying specific cancer driver mutations, offering 
insights into cancer origins, pathogenesis, tumor heterogeneity, 
clonal evolution, and facilitating drug discovery and testing. This 
article reviews recent progress in utilizing hPSCs for clinically 
relevant cancer models and highlights efforts to deepen our 
understanding of fundamental cancer biology.
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Introduction
Since James Thomson’s isolation and establishment of 
human embryonic stem cell lines [1] and Shinya Yama
naka’s revolutionary development of induced plur
ipotent stem cells (iPSCs) [2,3], the scientific 

community has eagerly embraced these human devel
opmentally relevant cell systems to study embryogenesis 
and disease etiology for nearly two decades. With the 
advent of cutting-edge genome editing technologies, 
including zinc-finger nucleases, transcription activator–
like effector nucleases, clustered, regularly interspaced, 
short palindromic repeat/Cas9 (CRISPR/Cas9), and base 
editors [4,5], numerous experiments that were pre
viously impossible due to the lack of available patient 
tissues are now being conducted on a large scale. By 
integrating defined lineage differentiation and organoid 
development [6], we are now able to differentiate these 
disease-relevant human pluripotent stem cells (hPSCs) 
into the cells of origin for many diseases, allowing us to 
model disease development, dissect disease mechan
isms, and develop therapeutics for treatment [7].

Cancer is considered one of the most challenging dis
eases among human illnesses due to its complexity, 
widespread impact, and often devastating consequences. 
Unlike many other diseases, cancer involves the un
controlled growth and spread of abnormal cells, which 
can invade and damage surrounding tissues and organs 
[8]. This makes it particularly challenging to treat. Given 
its complexity, resistance to treatment, and far-reaching 
impact on health and society, cancer remains a life- 
threatening disease that necessitates ongoing research, 
advanced therapies, and comprehensive prevention 
strategies.

For over 50 years, cancer researchers have employed cell 
lines, primary cells, patient-derived xenografts, samples, 
and small organism models, including fruit flies, zebra
fish, and mice to understand cancer. Despite these ef
forts, the inherent complexity of the cancer genome and 
species-specific differences frequently hinder the ef
fective translation of these discoveries into clinical ap
plications. To overcome these drawbacks, many research 
groups, including ours, have employed human-based 
models to study cancer development, understand the 
underlying pathological mechanisms and treatment re
sistance, and aim to develop novel therapeutics for 
cancer patients. A series of pioneering studies using 
cancer-relevant iPSCs [9–13] and engineered hPSCs 
[14,15] in cancer research have enhanced our under
standing of malignant cell states and the oncogenic 
transformations occurring at both the premalignant 
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initiation stage and the malignant late stage. Subse
quently, various cancer-relevant patient iPSCs and en
gineered hPSCs were generated to study a range of 
cancer types, including sarcoma [9,10,16–18], retino
blastoma [19–21], myelodysplastic syndrome (MDS), 
leukemia [11,12,22–31], colorectal cancer [13,32], pan
creatic cancer [33–35], lung cancer [36,37], ovarian 
cancer [38], kidney cancer [39], gliomas [14,15,40–43], 
medulloblastoma [44,45], atypical teratoid/rhabdoid 
tumor (ATRT) [46], and neuroblastoma [47] over the 
following years. These studies not only provide com
pelling evidence for the feasibility of using hPSC plat
forms in cancer research but also present an alternative 
model for integrating and comparing with other cancer 
model systems.

This review highlights recent studies using patient-de
rived iPSCs and engineered hPSCs to dissect cancer 
etiology, develop therapeutic testing, and identify pro
mising treatments. Due to space limitations, we have 
focused on iPSC-related cancer studies that not only 
generate cancer models but also offer significant insights 
into cancer mechanisms and therapeutic development.

Nervous system tumors
The human nervous system functions as a comprehen
sive communication network throughout the body, 
consisting of the central nervous system (CNS), which 
contains the brain and the spinal cord, and the peripheral 
nervous system (PNS), which is made up of peripheral 
nerves originating from the CNS [48]. As the nervous 
system coordinates and controls all functions of the 
body, cancer of the nervous system is among the most 
prominent and malignant types of solid tumors. Various 
iPSC-derived platforms, including in vitro differentiated 
cell cultures and in vivo tumor models, have been de
veloped to investigate the underlying molecular me
chanisms and facilitate anticancer drug screening for 
CNS tumors, such as astrocytoma [40], diffuse intrinsic 
pontine glioma (DIPG) [41], low-grade glioma (LGG) 
[42], medulloblastoma [44,45], glioblastoma multiforme 
[43], and atypical teratoid/rhabdoid tumor [46], as well as 
PNS tumors like neuroblastoma [47].

Glioma is the most common, devastating, and least 
curable malignant tumor of the CNS, originating from 
the glial cells of the brain and spine. Using iPSC-derived 
astrocytes from Li-Fraumeni syndrome (LFS) patients 
carrying an inherited germline p53(G245D) mutation 
[49], as well as those from healthy family controls 
transduced with various mutant p53s, Xu et al. identified 
a transcriptional complex formed by mutant p53, actin/ 
myosin-II-binding protein SVIL, and H3K4me3 me
thyltransferase MLL1, which drives gliomagenesis [40]. 
The mutant p53/SVIL/MLL1 complex binds to the 
promoter of the N6-methyladenosine (m6A) reader 

YTHDF2, transcriptionally activating its expression. 
The aberrant upregulation of YTHDF2 promotes the 
degradation of m6A-marked CDKN2B and SPOCK2 
transcripts, leading to neoplastic transformation in LFS- 
derived p53-mutant astrocytes. These findings shed 
light on the molecular events underlying early glioma
genesis in patients with LFS and suggest potential 
therapeutic strategies for preventing and treating p53- 
mutant gliomas by targeting the mutant p53/SVIL/ 
MLL1 complex, as well as its downstream effector 
YTHDF2 (Figure 1a).

Neuroblastoma is a pediatric tumor originating from neural 
crest cells (NCCs). To investigate the pathological me
chanisms triggering neuroblastoma, Huang et al. devel
oped transgenic iPSC-derived NCCs that stably expressed 
MYCN and/or a constitutively active ALK(F1174L) mu
tant [47]. While forced expression of MYCN in iPSC- 
NCCs led to tumors resembling neuroblastoma, ALK 
(F1174L) alone was insufficient to initiate neuroblastoma. 
However, ALK(F1174L) can work in conjunction with 
MYCN to drive neuroblastoma pathogenesis and further 
enhance tumor malignancy. Mechanistically, a regulatory 
circuit linking POSTN and WNT signaling operates 
downstream of ALK(F1174L) to promote cancer cell ad
hesion, migration, and growth. Thus, targeting POSTN 
and WNT signaling may offer potential therapeutic ap
proaches for ALK-driven tumors (Figure 1b).

Elucidating the cell-of-origin of cancers is a fundamental 
aspect of cancer biology. To determine the originating 
cells for DIPG driven by the H3.3-K27M mutation, 
Haag et al. used CRISPR/Cas9 to introduce a condi
tional H3.3-K27M mutation and differentiated iPSCs 
into various neural progenitor cells, including neural 
stem cells (NSCs), oligodendrocyte progenitor cells, and 
astroglial-restricted precursor cells [41]. They demon
strated that H3.3-K27M NSCs, but not glia progenitors, 
are the originating cells for H3.3-K27M-driven DIPGs, 
supporting previous Funato K’s study [15] (Figure 1c). 
Another study performed by Anastasaki et al. leveraged 
the versatility of the iPSC platform and advances in 
CRISPR/Cas9 technology to study potential originating 
cells for LGGs [42]. They discovered that neuroglial 
progenitor populations, including neural progenitors, 
glial restricted progenitors, and oligodendrocyte pro
genitors, could be involved in LGG formation, while 
terminally differentiated astrocytes are not. Further
more, co-deleting SMARCB1 and TP53 genes in iPSCs, 
followed by neural induction, leads to the formation of 
ATRT-like spheroids [46], and subcutaneous injection 
of iPSCs with PTCH1 knockdown into im
munodeficient mice results in the development of me
dulloblastoma-like tissue [45] (Figure 1d).

Taken together, these findings highlight the diverse 
applications of iPSCs in modeling and exploring the 
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etiology and the cell-of-origin of nervous system cancers, 
as well as in anticancer drug testing.

Hematological malignancies
Hematological malignancies are a diverse group of blood 
cancers characterized by abnormal hematopoiesis and 
categorized into three major types: leukemia, lymphoma, 
and myeloma [50]. Among adults, acute myeloid leu
kemia (AML) and chronic myeloid leukemia (CML) are 
the most prevalent forms of these malignancies. AML is 
an aggressive hematologic malignancy that arises from 
hematopoietic stem and progenitor cells (HSPCs), which 
are essential for producing blood cells in the bone 
marrow [51]. AML is characterized by the accumulation 
of immature myeloblasts in bone marrow, peripheral 
blood, or other tissues, disrupting normal hematopoi
esis [51].

Kotini et al. successfully reprogrammed bone marrow 
mononuclear cells (BMMCs) and peripheral blood 
mononuclear cells isolated from 15 patients across major 
genetic AML subtypes into iPSCs (AML iPSCs), which 
were then differentiated into HSPCs [22]. The derived 
HSPCs displayed key leukemic features both in vitro 
and upon engrafted into immunodeficient mice. 

Importantly, single-cell transcriptomic analysis con
firmed that the leukemias derived from these HSPCs 
closely resembled the primary patient-matched xeno
grafts, highlighting their potential as robust models for 
studying AML (Figure 2a). In addition, Wang et al. 
presented another AML iPSC modeling approach by 
leveraging CRISPR/Cas9 technology to introduce het
erozygous AML-associated mutations, including ASXL1 
C-terminal truncation, SRSF2(P95L), and NRAS(G12D) 
in normal iPSCs [23]. The introduction of these three 
driver mutations into iPSC-derived HSPCs captured key 
aspects of primary MDS and AML, including pheno
typic, transcriptomic, and chromatin features. In addition 
to AML, patient-derived iPSCs harboring the 
BCR::ABL1 Philadelphia chromosome have been used 
to model CML [24], a myeloproliferative neoplasm 
characterized by abnormal growth and overproduction of 
mostly myeloid cells at the expense of other blood cells 
in the bone marrow. These iPSCs were treated with the 
mutagenic agent N-ethyl-N-nitrosourea (ENU) to in
duce genomic instability, generating leukemic cells with 
genomic alterations commonly found in patients with 
CML during the blast crisis phase. Additionally, Down 
syndrome myeloid leukemia (DS-ML), a form of leu
kemia associated with Down syndrome and mutations in 

Figure 1  
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Application of hPSCs for understanding the etiology of nervous system tumors. (a) iPSCs derived from an LFS family carrying a p53 mutation were 
differentiated into astrocytes. A transcriptional complex composed of mutant p53, SVIL, and MLL1 binds to the promoter region of YTHDF2, leading to 
its transcriptional activation and subsequent degradation of CDKN2B mRNAs. This process ultimately drives oncogenic transformation in LFS 
astrocytes. Additionally, the gain-of-function of this mutant p53 contributes to glioma progression in glioma cell lines. (b) NCCs derived from iPSCs 
that stably express MYCN and ALK(F1174L) mutations initiate neuroblastoma. In these ALK-driven neuroblastoma tumors, a regulatory circuit linking 
WNT signaling with POSTN promotes tumor growth. (c) Characterization of the cell-of-origin of H3.3-K27M-mutated DIPGs suggests that these 
tumors arise from NSCs rather than oligodendrocyte progenitor cells or astroglial-restricted precursor cells. (d) Normal iPSCs are engineered with 
deletions of SMARCB1 and TP53 and then differentiated into neural spheroids, which exhibit an ATRT-like phenotype. Additionally, PTCH1-depleted 
iPSCs, when transplanted in vivo, develop medulloblastoma-like tissues. Created with Biorender.com.  
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the hematopoietic transcription factor GATA1 gene, was 
modeled using patient-derived iPSCs. CRISPR/Cas9 
was employed to introduce GATA1 and STAG2 double 
mutations, effectively replicating the genetic landscape 
of DS-ML [25] (Figure 2b).

MDS are myeloid malignancies characterized by the 
expansion of a single dominant hematopoietic stem cell 
population, impaired blood cell production, and an ele
vated risk of progression to secondary AML [26]. Mu
tations in splicing factors, such as SRSF2, U2AF1, and 
SF3B1, are the most prevalent mutations in MDS [52]. 
Among these, mutations in the core RNA splicing factor 
SF3B1, present in approximately 30% of MDS cases, are 
the hallmark of the MDS-RS (MDS with ring side
roblasts) clinical subgroup [27]. In a study by Asimomitis 
et al., 18 iPSC lines were generated from BMMCs of 
three patients with MDS-RS carrying isolated 
SF3B1(K700E) mutation, the most frequent mutation in 
MDS, and their genetically matched SF3B1(WT) iPSCs 
to explore MDS-RS pathogenesis. Analysis of the tran
scriptomic and chromatin landscape in these iPSC-de
rived HSPCs revealed a unique splicing signature and 
transcriptional program linked to the SF3B1(K700E) 
mutation. Furthermore, their study showed that 

SF3B1(K700E) HSPCs exhibited an enhanced pro
pensity for megakaryocyte-erythroid differentiation and 
a Hippo pathway-independent increase in the tran
scriptional activity of the TEAD transcription factor fa
mily, suggesting that TEAD could be a potential 
therapeutic target specific to SF3B1(K700E)-mutated 
MDS-RS (Figure 2c). In addition, CRISPR/Cas9-en
gineered U2AF1(S34F) and SRSF2(P95L)-mutated 
iPSC-derived HSPCs were also employed to investigate 
the oncogenic roles of these heterozygous splicing factor 
mutations [28]. The study demonstrated that these 
mutations resulted in alternative splicing, producing a 
long isoform of GNAS (GNAS-L), which is implicated as 
a phenotypic driver of MDS. Notably, GNAS-L encodes 
Gαs-L, a hyperactive long form of the stimulatory G 
protein alpha subunit Gαs, which activates ERK/MAPK 
signaling, promoting MDS development and rendering 
U2AF1- and SRSF2-mutant cells particularly suscep
tible to MEK inhibition therapy (Figure 2d).

Interestingly, chromosomal translocation is a prominent 
genomic abnormality found in blood diseases. Nakamura 
et al. generated iPSC lines from patients with MDS 
harboring the t(3;8)(q26.2;q24) translocation and in
vestigated the resulting iPSC-derived hematopoietic 

Figure 2  
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Utilizing hPSCs to investigate the etiology of hematological malignancies. (a) iPSCs derived from patients with AML are differentiated into HSPCs and 
used in xenograft models. Single-cell transcriptomics reveals that the resulting tumors closely resemble those found in patients with AML. (b) iPSCs 
derived from patients with CML are treated with ENU to induce genomic instability, leading to the formation of leukemic cells, recapitulating CML blast 
crisis. Furthermore, introducing GATA1 and STAG2 mutations into trisomy 21 iPSCs results in the development of DS-ML. (c) iPSCs derived from 
patients with MDS are used to study the SF3B1(K700E) mutation. SF3B1(K700E) HSPCs display a distinct splicing signature and transcriptional 
program compared to wild-type counterparts, including increased activity of the TEAD transcription factor family. (d) Normal iPSCs are engineered to 
harbor U2AF1(S34F) and SRSF2(P95L) mutations, which result in the accumulation of Gαs-L and subsequent activation of the ERK/MAPK signaling 
pathway. This genetic modification renders the cells susceptible to MEK inhibition therapy. Created with Biorender.com.  
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progenitor cells [29]. These cells successfully replicated 
the disease phenotype by demonstrating MECOM up
regulation through increased H3K27ac and activation of 
the MYC blood enhancer cluster. Using this model, they 
discovered potential therapeutics by treating MDS cells 
with the BET inhibitor JQ1, which suppressed super
enhancer activity and downregulated MECOM expres
sion, highlighting the potential of iPSCs as a powerful 
platform for discovering and evaluating therapeutic tar
gets and drugs for MDS treatment.

Fanconi anemia (FA), a prototypical inherited bone 
marrow failure syndrome, has a high risk of progressing 
to MDS and AML. This transformation often involves 
HSPCs acquiring abnormal self-renewal capabilities due 
to somatic mutations. Marion et al. employed screening 
of MDS hotspot mutations and found that RUNX1 
mutations drive aberrant HSPC self-renewal and im
paired differentiation [30]. Mechanistically, FA MDS 
iPSC-derived HSPCs exhibited mutant RUNX1-medi
ated disruption of the G1/S cell cycle checkpoint and 
activation of innate immune signaling, which stabilizes 
BRCA1 and suggests targeted treatment options. Their 
results provide insight into MDS pathogenesis and offer 
a platform for discovering new therapies for FA-asso
ciated MDS.

Retinoblastoma
Retinoblastoma is a rare cancer that affects children, 
typically arising in the retina during fetal development 
and being diagnosed within the early years of life [53]. In 
most cases, retinoblastomas are developed due to bial
lelic mutation of the RB1 tumor suppressor gene. Pa
tients with a germline mutation in one RB1 allele are at a 
high risk of developing retinoblastoma, with tumors 
forming when the remaining RB1 allele becomes mu
tated, which is well-known as Knudson’s ‘two-hit’ hy
pothesis [54]. Norrie et al. developed hereditary 
retinoblastoma (HRB) iPSC-derived retinal organoids 
from 15 individuals with germline RB1 mutations and 
from CRISPR/Cas9-engineered counterparts, where 
specific mutations were introduced to inactivate RB1 
[19]. These organoids were orthotopically transplanted 
into the vitreous of mice to examine retinoblastoma 
formation in vivo. Their study showed that these iPSC- 
based organoid-derived retinoblastomas faithfully re
capitulated the molecular, cellular, histopathologic, ge
netic, epigenetic, and clonal characteristics observed in 
patient retinoblastomas and orthotopic patient-derived 
xenografts.

Given the advantages of organoids in modeling retino
blastoma and the critical role of biallelic RB1 mutations 
in retinoblastomagenesis, Rozanska et al. developed or
ganoid models derived from iPSCs generated from a 
patient with a heterozygous RB1 mutation and their 

CRISPR/Cas9-engineered counterparts, including 
homozygous mutants and corrected isogenic controls 
[21]. Their study demonstrated that RB1 homozygous 
mutant, but not wild-type or heterozygous mutant, 
iPSC-derived organoids exhibited high mitotic activity, 
tumorigenic signatures, and excessive proliferation of 
cone precursors, identified as retinoblastoma-like clus
ters through single-cell RNA-seq analysis. Additionally, 
the RB1 homozygous mutant organoids were effectively 
used for antiretinoblastoma drug testing, highlighting 
the potential of this iPSC-derived model for drug de
velopment. In line with Rozanska A’s study, Li et al. 
utilized heterozygous frameshift germline RB1-mutated 
‘first-hit’ HRB iPSCs and introduced a ‘second hit’ 
mutation via CRISPR/Cas9-mediated gene knock-in to 
create compound heterozygous mutations, thereby vali
dating Knudson’s ‘two-hit’ hypothesis [20]. Wild-type, 
heterozygous HRB, and compound heterozygous HRB 
iPSCs were differentiated into human retinal organoids 
and subjected to RNA-seq analyses to identify differ
entially expressed genes. Tumor formation and patho
logical features of human retinoblastomas were observed 
in the compound heterozygous HRB organoids, but not 
in wild-type or heterozygous HRB organoids (Figure 3a). 
These findings introduced novel iPSC-derived models 
for studying retinoblastoma and provided strong evi
dence supporting Knudson’s theory.

Sarcoma
Osteosarcoma is one of the most common primary bone 
malignancies in childhood and adolescence. It occurs in 
patients with several cancer-prone genetic disorders, such 
as LFS, HRB, and Rothmund-Thomson syndrome (RTS) 
[55]. Germline mutations in the p53, RB1, and RECQL4 
genes, which lead to inherited cancer syndromes, are also 
frequently observed as somatic mutations in sporadic os
teosarcoma specimens, underscoring the critical role of 
these genes in osteosarcomagenesis. Choe et al. in
vestigated the p53(A347D) oligomerization mutation 
identified in patients with LFS [56]. Using LFS iPSC- 
derived osteoblasts, which serve as a cellular model for 
osteosarcoma, and CRISPR/Cas9-engineered osteo
sarcoma cell lines, they discovered that p53(A347D) ex
hibits tumorigenic properties similar to p53-null cells. 
However, p53(A347D) also displays unique gain-of- 
function activities, such as metabolic reprogramming and 
disruption of the mitochondrial network. Additionally, the 
mutant enhances apoptosis in response to topoisomerase 
II inhibition in a transcription-independent manner. 
These findings suggest that p53(A347D) possesses both 
loss-of-function and neomorphic gain-of-function char
acteristics, presenting novel therapeutic opportunities 
using topoisomerase II inhibitor etoposide to treat p53- 
mutant osteosarcoma. Interestingly, dysregulation of mi
tochondrial function is also observed in RTS iPSC-de
rived osteoblasts [17], highlighting the critical role of 
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mitochondrial homeostasis in preventing abnormal cel
lular transformation in bone tissue (Figure 3b). Consistent 
with this finding, the LFS iPSC model with the 
p53(G245D) hotspot mutation was effectively used to 
investigate mutant p53’s gain-of-function and its asso
ciated tumorigenic properties, including impairing the 
H19 imprinted gene network [9] and promoting tumor 
angiogenesis by upregulating SFRP2 expression [10]. In 
addition, by introducing MYCN into LFS iPSC-derived 
NCCs with a p53(G245S) hotspot mutation, Mukae et al. 
generated transformed clones that were used to develop 
chondroblastic osteosarcoma in vivo [57]. Gene expression 
analysis and exome sequencing revealed osteosarcoma- 
specific features, such as activation of transforming growth 
factor (TGF)-β signaling and amplification of the GLI1 
gene (Figure 3c). These findings underscore the model’s 
value as a tool for studying MYCN-overexpressing and 
p53-mutated chondroblastic osteosarcoma and for devel
oping new treatments for this type of cancer.

Another study presented by Tu et al. developed HRB 
patient-derived iPSCs and mutation-corrected isogenic 
controls to explore how RB1 mutations drive tumor in
itiation and progression, with a focus on osteosarcoma [16]. 
They demonstrated that RB1 regulates spliceosomal gene 

expression through its role as a transcriptional repressor, 
inhibiting the transcriptional activator E2F3a. Analysis of 
clinical samples and large-scale data confirms the im
portance of the RB1/E2F3a network across various cancers, 
highlighting a connection between high spliceosomal gene 
expression and poor patient outcomes. The research also 
identifies the spliceosome as a critical vulnerability in RB1- 
mutant cancers, suggesting that targeting spliceosome 
function could be an effective therapeutic strategy (Figure 
3d). Current trials of spliceosome inhibitors show promise 
in cancer treatment, indicating that this approach could be 
valuable for treating RB1-related osteosarcoma as well as 
other cancers with RB1 mutations.

Interestingly, while mutations in p53, RB1, and 
RECQL4 all lead to osteosarcomagenesis, mechanistic 
studies using iPSC approaches reveal diverse patholo
gical mechanisms with some overlapping hallmarks of 
cancer, such as mitochondrial dysfunction. This in
dicates that the oncogenic signals leading to osteo
sarcoma are complex and involve multiple coordinated 
pathways, rather than a single unique signaling pathway.

Mesenchymal chondrosarcoma is a rare malignant soft- 
tissue tumor, and gene fusions resulting from 

Figure 3  
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Dissecting the etiology of retinoblastoma and sarcoma via hPSCs. (a) iPSC-derived retinal organoids carry three different RB1 genotypes (wt/wt, m1/ 
wt, and m1/m2). Transcriptomic analysis showed that only the RB1(m1/m2) genotype recapitulates the pathological features of human retinoblastoma. 
m, mutation; wt, wild-type. (b) iPSCs derived from patients with LFS with p53(A347D) mutation and patients with RTS with RECQL4 mutations, when 
differentiated into osteoblasts, exhibit similar phenotypes, including metabolic reprogramming and disruption of the mitochondrial network. 
Topoisomerase II inhibitor etoposide can be used to treat cancers with the p53(A347D) mutation. (c) LFS patient-derived iPSCs carrying the 
p53(G245S) mutation develop chondroblastic osteosarcoma upon MYCN introduction, which activates TGF-β signaling and amplifies GLI1 gene. (d) 
HRB patient-derived iPSCs with RB1 mutation are differentiated into osteoblasts, revealing that RB1 acts as a transcriptional repressor of E2F3a- 
regulated spliceosomal genes. Upregulation of spliceosomal genes in RB1-deficient osteoblasts correlates with poor patient outcomes and higher 
sensitivity to spliceosome inhibitors. Created with Biorender.com.  
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chromosome rearrangements have been recognized as 
driver mutations in this cancer. The HEY1–NCOA2 
gene fusion, a recurrent chromosomal rearrangement, 
has been identified as a key driver mutation. Qi et al. 
investigated mesenchymal chondrosarcoma by stably 
transducing an inducible HEY1–NCOA2 fusion gene 
into wild-type iPSC-derived mesenchymal stem cells, 
which are the cell-of-origin of mesenchymal chon
drosarcoma, to study its effects [18]. Their comprehen
sive analysis revealed that the HEY1–NCOA2 fusion 
protein preferentially binds to promoter regions of 
HEY1 targets, enhances cell proliferation, and directly 
upregulates PDGFB and PDGFRA, leading to sig
nificantly increased AKT activity. These insights from 
the iPSC model suggest that targeting the PDGF/PI3K/ 
AKT pathway could be a promising therapeutic ap
proach for treating mesenchymal chondrosarcoma.

Lung cancer
RET oncogene rearrangements occur in a small per
centage of lung adenocarcinoma. Marcoux et al. devel
oped lung progenitor cells (LPCs) from patient-derived 
iPSCs carrying the RET(C634Y) mutation, analyzed the 
resulting abnormal cancer gene expression, and identi
fied oncogenic markers PROM2 and C1QTNF6, both 
associated with poor non–small cell lung adenocarci
noma (NSCLC) outcomes [36]. The LPCs responded 
positively to pralsetinib, a RET inhibitor, highlighting 
the RET(C634Y) iPSC model’s effectiveness in re
plicating NSCLC biology and its potential for ther
apeutic development. In parallel, tumor-like structures, 
morphological irregularity, proliferation capacity, and 
HER2/ESRRB-activated RAS/RAF/MAPK and PI3K/ 
AKT/mTOR were discovered in HER2-overexpressing 
hiPSC-derived lung organoids [37], which reflects clin
ical lung cancer with HER2 amplification. These studies 
support that the iPSC model is capable of recapitulating 
the early tumorigenesis of lung cancers.

Colorectal cancer
Patients with constitutional mismatch repair deficiency 
(CMMRD) experience a complete loss of mismatch re
pair, leading to the development of colorectal cancer. 
Forster et al. investigated CMMRD in patients with a 
homozygous deletion of the pathogenic EPCAM gene, 
focusing on the occurrence of genome mutations in 
EPCAM-deleted iPSC-derived colonic organoids. They 
found MSH2 promoter hypermethylation and loss of 
MSH2, which resulted in a high mutation rate and 
characteristic features of mismatch repair deficiency [32]. 
In alignment with the use of colonic organoids derived 
from the familial adenomatous polyposis iPSCs to in
vestigate colorectal cancer [13], these findings highlight 
the potential of iPSC and organoid models to reveal 
tissue-specific mechanisms underlying colorectal malig
nancies.

Future perspectives
iPSC technology has been employed in cancer research 
for over a decade, providing a unique platform to study 
the entire transformation process from normal to can
cerous cells and uncover the underlying pathological 
mechanisms. Two primary hPSC-based cancer model 
systems — patient-derived iPSCs and engineered 
hPSCs — offer unique advantages in uncovering the 
oncogenic roles of oncogenes and tumor suppressor 
genes during the early stages of tumorigenesis, a crucial 
yet underexplored area in cancer research that holds 
significant potential for advancing cancer prevention. 
These models also support hypothesis-driven drug 
testing and the development of effective and clinically 
applicable treatments. With advancements in genome 
editing technologies and efficient gene delivery systems, 
hPSCs can now be readily manipulated to mimic cancer- 
associated mutations, deletions, fusions, and amplifica
tions. By integrating organoid models and single-cell 
transcriptomics, we can analyze cancer heterogeneity, 
identify tumor-initiating cell populations, track clonal 
evolution, and even explore oncogenic signatures at the 
single-cell level.

The use of iPSCs in cancer modeling offers promising 
alternative approaches, providing a renewable and 
cancer-relevant cell source for investigating cancer 
biology. However, like any model system, there are 
several limitations and challenges that must be con
sidered when using iPSCs to study cancer. These issues 
can significantly impact the insights gained from such 
models, and some key disadvantages include the fol
lowing:

Snapshot of tumorigenesis and mutational representa
tion: One of the major drawbacks of the iPSCs is that 
they may represent a snapshot of cancer at the initiation 
stage, potentially missing key features of cancer pro
gression and evolution. Cancer is a dynamic disease, and 
its progression involves multiple genetic alterations that 
accumulate over time. When iPSCs are generated, they 
may not capture the full spectrum of driver mutations 
that evolve during the cancer progression. Specifically, 
the iPSC clones derived may reflect only a subset of the 
mutations present at the time of sampling rather than 
the entire clonal landscape of the patient’s cancer. This 
is particularly relevant in cancers with chronic phases, 
where the disease evolves over time, with additional 
driver mutations accumulating to promote the evolution 
of cancer clones. As a result, iPSCs derived from a single 
gene alteration may only represent the initiation stage of 
tumorigenesis and may not adequately capture the 
complexity and heterogeneity of cancer across different 
stages. To make this iPSC cancer platform more ap
plicable, incorporating additional driver mutations would 
provide a more comprehensive understanding of tu
morigenesis and clonal evolution. For instance, studies 
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using hPSCs with multiple co-existing genome altera
tions will be essential for dissecting the various cancer 
subtypes (e.g. in glioma: LGG, diffuse LGG, anaplastic 
glioma, and glioblastoma) and their roles at different 
stages (e.g. in colorectal cancer: hyperplastic epithelium, 
adenoma, advanced adenoma with high-grade dysplasia, 
carcinoma, invasive carcinoma, and metastatic colorectal 
cancer). Moreover, iPSC reprogramming may pre
ferentially select for or against certain clones, meaning 
that key mutations relevant to cancer progression might 
not be retained or may be challenging to reprogram.

Cancer’s heterogeneity: Cancer is a heterogeneous 
disease with multiple clonal populations co-existing 
within a single tumor. This intratumoral heterogeneity 
is particularly pronounced in the later or chronic stages 
of cancer, where subclones may have distinct genetic 
and phenotypic features, contributing to disease pro
gression, treatment resistance, and metastasis. iPSC 
models typically generate homogeneous cell popula
tions, and thus, even though an iPSC line may re
present a specific clonal population, it cannot capture 
the full complexity of the tumor’s clonal architecture. 
To replicate the ongoing evolution of cancer, iPSCs 
can undergo repeated rounds of environmental stress, 
such as in vivo transplantation, to simulate the accu
mulation of driver mutations over time and model 
natural tumorigenesis. Additionally, introducing 
cancer-relevant mutations at different stages of dif
ferentiation can mimic clonal evolution, providing a 
more accurate representation of the heterogeneity 
observed in patient tumors.

Lack of tumor microenvironment: Another critical aspect 
of cancer evolution is the interplay between cancer cells 
and their microenvironment. Tumor cells continuously 
interact with various components of their niche, in
cluding stromal cells, immune cells, and extracellular 
matrix elements. These interactions play a key role in 
cancer progression, metastasis, and drug response. iPSC- 
derived cells, which serve as the origin of cancer cells 
and typically grow as homogeneous cultures in vitro, do 
not inherently replicate these complex cell–cell inter
actions. Therefore, modeling these interactions may re
quire complex multicell-type co-cultured assembloids or 
organoids that incorporate multiple cell types to better 
reflect the in vivo niche and capture the broader context 
of cancer’s evolutionary dynamics.

In conclusion, the future of cell reprogramming tech
nologies in cancer research holds great promise. We 
anticipate that the insights gained from the ongoing in
tegration of diverse areas in cancer and regenerative 
biology will deepen our understanding of tumor devel
opment and ultimately pave the way for new strategies 
in cancer prevention, as well as personalized treatments 
for those affected by cancers.
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